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Abstract

We consider certain results for the heat kernel of nonminimal operators. The
general expressions provided by Gusynin and Kornyak resulting from symbolic
computation programs for n dimensions are evaluated for four dimensions
which are checked against results given by Barvinsky and Vilkovisky. We
also check that the results in flat space are consistent with earlier results of
Guendelmen et al. We then consider a powerful construction of the Green
function of a nonminimal operator by Shore for covariantly constant gauge
fields in flat spacetime, and employ dimensional arguments to produce a check
on the gauge parameter dependence of a certain coefficient. The connection
of the results for heat kernel coefficients emanating from the construction of
Shore to those from other techniques is hereby established for the first time.

PACS numbers: 04.62.+v, 11.15.−q

1. Introduction

A traditional approach to evaluating the divergent part of the generating functional of Green
functions in field theory is the well-known heat kernel method, for a recent review see [1].
The coefficients in the asymptotic expansion of the ‘diagonal’ heat kernel elements are the
well-known Seeley–DeWitt coefficients. These are typically obtained for so-called minimal
operators of the type (−DμDμ + X). Nonminimal operators typically involve bilinears of
the type (−gμνD

ρDρ − (1/α − 1)DμDν + Xμν), where the minimal case is obtained with
α = 1.

In quantum-field theory, the divergent part of the one-loop generating functional of Green
functions may be expressed in terms of the second Seeley–DeWitt coefficient of certain
differential operators. The subject is by now standard and is discussed in standard textbooks.
Given a Lagrangian field theory, there is associated with this a differential operator denoted
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by D such that the one-loop generating function �(1) in the neighborhood of n = 4 is given in
dimensional regularization by

i

2
log detD = −

∫
dnx

1

(n − 4)
tr E4, (1)

where E4 is the second Seeley–DeWitt or the heat kernel coefficient of the differential
operator D.

Typical differential operators that are considered are of the minimal kind. Nonminimal
operators arise in gauge field theories in covariant gauges in general, where α is the gauge
parameter. For the reasons mentioned above, the parameter is set equal to unity, which
corresponds to the Feynman gauge1. Differential operators also appear in curved spacetime
which involve the Ricci tensor, curvature tensor and the scalar curvature. The traditional
method of evaluating the corresponding heat kernel coefficients going under the name of the
DeWitt method does not work for the nonminimal case. Techniques used for such nonminimal
operators go under the name of the Widom method. There are techniques advanced in the
literature which provide algorithms based on the Widom method to compute the heat kernel
coefficients [3–5]. Note that nonminimal operators have also been considered in the context
of noncommutative field theories [6].

Results have been presented by Barvinsky and Vilkovisky (BV) in [7] with curvature,
where some of the results crosscheck those that were presented in earlier literature. More
recently, Pronin and Stepanyantz (PS) in [8] have also considered the nonminimal case and
found results consistent with those in [7]. The heat kernel coefficient corresponding to what
is a surface term is not given by PS. Even more recently these operators have been studied
by Gusynin and Kornyak (GK) in [9], using symbolic computation and including the tensor
denoted by Wij to account for gauge fields, and results have been provided for the general
case of n dimensions. However, no attempt has been made to compare the results from this
to those of BV and PS, although it is a straightforward exercise. Here we provide such a
comparison, as it is very important to check the results in every possible manner. Furthermore,
it is important to look for an important crosscheck on the coefficient of the bilinears involving
the gauge field strength tensor, and in particular of its dependence on the parameter α. Results
have been provided by Guendelman et al [10], which are also based on symbolic computation
methods.

In this regard, we show here that an elegant analytical approach is also available to
accomplish this goal: we look at a completely different solution present in the literature which
has not attracted attention to the best of our knowledge. This is the general case considered by
Shore [11], for the case of a covariant gauge, but in flat spacetime. It is shown here that a study
of his construction can provide a consistency check on the results obtained from the general
expressions of GK for the case of four dimensions for the bilinear in gauge field strength. A
different approach that also provides a proof of such gauge parameter independence is given
by Avramidi [12].

In section 2, we present an evaluation of the heat kernel coefficients for four dimensions
from the general expressions given by GK. We carefully compare the results given by BV
and PS. It will turn out that one of the coefficients in our evaluation remains untested at
this stage, but interestingly enough is independent of α for n = 4. This coefficient along
another combination of coefficients that is itself independent of α for n = 4, which we will
discuss, will be related to the work of Guendelman et al, who computed what is effectively
this combination using symbolic computation. Yet other coefficients are listed here for the

1 Note, for instance, that the divergent part of the one-loop generating functional in chiral perturbation theory with
virtual pions has been computed only in the Feynman gauge [2].
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Table 1. List of irreducible basis of tensor bilinears appearing in the divergent part of the one-loop
generating functional, the corresponding coefficients and their values.

Term Coefficient Value

RijklR
ijkl − 4RijR

ij + R2 C9 −11/180
RijR

ij (4C9 − C11) (5γ 2 + 10γ − 32)/120
R2 (C13 − C9) (5γ 2 + 20γ + 28)/240
RijX

ij −C10 −γ (γ + 4)/12
XijX

ij (C4/2 + C5) (γ 2 + 6γ + 12)/24
RXi

i −C14 −(γ 2 + 2γ + 4)/24

Xi
iX

j

j C4/2 γ 2/48

Wij W
ij C8 1/3

first time for n = 4. We advance here an analytical argument in section 3 where we consider
in considerable detail the construction of Shore and work out the consequences for the heat
kernel coefficients. In section 4, we provide a discussion on the results and recapitulate the
main results in this work.

2. The results of Gusynin and Kornyak for four dimensions

A comprehensive treatment for the evaluation of the trace of the second Seeley–DeWitt
coefficient termed E4 is provided by GK [9]. In this paper, the trace of the Seeley–DeWitt
coefficient is evaluated explicitly in the curved background and in the arbitrary gauge, and
a list of Ci, i = 1, . . . , 14, is provided in n dimensions, in terms of a parameter a, where
a = 1 − 1/α. For all other definitions and conventions we refer to the paper of GK. Recall
that the divergent part of the generating function is given by the spacetime integral of

tr E4 = (4π)−n/2 ·
[
−C1DiD

iX
j

j − C2DiDjX
ij − C3DiDjX

ji +
C4

2
(Xi

jX
j

j + XijX
ij )

+ C5XijX
ji + C6XijW

ij − C7WijX
ij + C8WijW

ij + C9RijklR
ijkl

−C10RijX
ij − C11RijR

ij + C12DiD
iR + C13R

2 − C14RXi
i

]
. (2)

We introduce a further parameter γ ≡ a/(1 − a) in order to have an effective comparison
with the results of BV. We evaluate these for the case of four dimensions from the general
formulae of GK and tabulate the (combinations) of coefficients in tables 1 and 2. The results
expressed in table 1 are grouped to effect an easy comparison with known results in the
literature. In particular, we present those combinations of C4, C5, C9, C10, C11 and C13 which
appear in the work of BV. The following may be noted:

(a) The sign convention for C10, C14 differs from that in BV.
(b) We regroup the terms to obtain the combination (RijklR

ijkl −4RijR
ij +R2) (surface term).

(c) Our results are in complete agreement with BV (also with those of PS, while noting that
the latter omit the surface term). Note that in BV the divergent part of the generating
functional involves (log L2) (where L is a large momentum scale) and it may be noted
that one may map results obtained with cutoff regularization with those in dimensional
regularization by identifying this with −2/(n − 4).

(d) The last entry in table 1 is not present in BV and needs to be verified independently, at
least for the dependence on the gauge parameter.
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Table 2. List of the remaining coefficients.

Coefficient Value

C1 {γ (−6 + 9γ + 7γ 2) + 6(1 − γ 2) log(1 + γ )}/(36γ 2)

C2 {γ (96 + 150γ + 29γ 2 − 6γ 3) − 6(16 + 33γ + 17γ 2) log(1 + γ )}/(72γ 2)

C3 {−γ (48 + 66γ + 19γ 2 − 6γ 3) + 6(8 + 15γ + 7γ 2) log(1 + γ )}/(72γ 2)

C6 −{γ (288 + 756γ + 654γ 2 + 156γ 3 − 27γ 4 + 4γ 5)

−36(1 + γ )2(8 + 9γ ) log(1 + γ )}/(288γ 2(1 + γ )

C7 −{γ (288 + 756γ + 510γ 2 + 12γ 3 − 27γ 4 + 4γ 5)

−36(1 + γ )2(8 + 9γ ) log(1 + γ )}/(288γ 2(1 + γ )

C12 {γ (60 + 288γ + 95γ 2) − 30(2 + 9γ + 6γ 2) log(1 + γ )}/(360γ 2)

(e) Despite the lack of details in GK, one may try to compare the results in GK with those
of Guendelman et al [10]. In order to carry out a comparison with the results in the
work of Guendelman et al, the following may be readily noted: with the identification
Xij = −2Wij , where Wab

ij = f abcF c
ij (see equation (2) in [10]), the resulting coefficient

of WijW
ij is given by

(2C4 − 4C5 − 2C6 + 2C7 + C8) = 1
12 (−25 + n + αn/2−2) (3)

which is in agreement with equation (13) in [10]. Other terms in equation (2) for this
case in flat space vanish due to reasons of symmetry. The checks with the results of BV
provide a check on the α independence of (2C4 − 4C5 − 2C6 + 2C7), but that of C8 can
be checked only from the above. Thus, we show here for the first time the agreement of
results obtained by two independent groups, which constitutes an important cross-check
on the results.

(f) Despite all the cross-checks carried out so far, what is of interest to us here is to find
an analytical argument for the feature of gauge independence of the combination on the
left-hand side of equation (3) for n = 4. In order to facilitate this latter, we will turn to
the construction of Shore which is the subject of the following section.

In table 2, we present the values obtained for those coefficients that do not appear in
table 1. These have not, to the best of our knowledge, appeared in the literature for four
dimensions2. These have a well-defined limit in the Feynman gauge (α = 1, a = γ = 0):
C1 = 1/6, C2 = C3 = C6 = C7 = 0, C12 = 2/15. These do not appear in BV as those
accompanying C1,2,3,12 vanish upon spacetime integration and those accompanying C6,7 do
not appear when gauge fields are not present.

3. Heat kernel coefficients from Shore’s construction

Shore considers the case of a covariantly constant field and obtains an explicit form for the
entire heat kernel. In terms of the heat kernel obtained for the minimal case, an expression is
provided for the nonminimal case as well. An expression for the one-loop divergence as the
logarithm of the determinant of the relevant operator is also provided. For caveats regarding
the use of the expressions in the R gauge and conventional Lorentz gauge which will not affect
our results, and for more details, we refer to the paper of Shore. A similar construction was
also considered earlier by Endo [14].

2 Expressed differently, this is a log α dependence of some terms in the divergent part of the effective Lagrangian,
which has been noted in the context of resonance saturation in chiral perturbation theory [13].
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There are several steps in the program which is described below in some detail, keeping
in mind that precise definitions may be found in the paper of Shore:

(a) The object of the study of Shore is the kernel Gab
μν(x, y, ; t, m2) for the vector operator

Dab
μν for arbitrary α. It is defined by(
−D2gμλ +

(
1 − 1

α

)
DμDλ + 2igRFμλ + m2gμλ

)ac

Gcb
λν(x, y, ; t;m2)

= −∂Gab
μν(x, y, ; t;m2)

∂t
, (4)

and satisfying the initial condition

Gab
μν(x, y; 0,m2) = δabgμνδ(x, y). (5)

The covariant derivative Dab
μ ≡ ∂μδab − igAc

μtcab, where Ac
μ is the gauge field and t cab are

the generators of the gauge group.
(b) If the condition Dμm2 = 0 is satisfied then the kernel for nonzero mass factorizes into

Gμν(x, y; t;m2) = Gμν(x, y; t; 0) exp(−m2(y)t). (6)

(c) There is an ansatz that relates the solution for the nonminimal operator to that of the
minimal operator (α = 1) with m2 = 0, for the case of covariantly constant fields.
The heat kernel for the minimal operator with m2 = 0 is denoted by Gμν(x, y; t), and
the corresponding Green function is denoted by G(x, y). Armed with this, the function
Hμν is constructed and the desired heat kernel for the zero mass case is constructed via

Gμν(x, y; t, 0) = G(x, y; t) + DμDλ {Hλν(x, y; t) − Hλν(x, y; t/α)} . (7)

(d) This expression has an remarkable property in that the α dependence factors out
completely. An explicit expression for the heat kernel of the minimal operator with
m2 = 0 for the case of the covariantly constant gauge field strength is provided, and
eventually an expression for the logarithm of the determinant of the operator.

(e) Consider now the result presented in equation (4.67) in [11]. In this expression, for our
purposes it suffices to suppress the trace over the gauge indices (Tr), and instead introduce
a constant C, and inserting the spacetime trace (tr) for the case of n = 4, we write the
schematic expression for the logarithm of the determinant of the differential operator as
1

C
log detD = −(4π)−n/2

∫
dnx

·
∫ ∞

0
dt t−1−n/2[(gF t)2/sin2(gF t)

{
(4 cos(2gF t) − 1) e−m2t + e−αm2t

}]
.

(8)

The divergent part is now obtained by expanding out the parts of the integrand that do not
involve the exponentials in powers of t. Recalling that∫ ∞

0
dt t r−1−n/2 e−m2t = �(r − n/2)(m2)n/2−r , (9)

�(−k + ε) = (−1)k

k!

(
1

ε
+ · · ·

)
, k = 0, 1, 2, . . . , (10)

we can readily see that the divergent part in the spacetime integrand now reads for the
case of four dimensions:

−1

2

1

16π2

1

n − 4
(3 + α2)m4 +

1

3

g2

16π2

1

n − 4
20F 2. (11)
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It may be recalled here that the residue of the pole at 4 in the spacetime integrand of
(−1/2) log detD is the trace of the second Seeley–DeWitt coefficient, keeping in mind
that Shore employs the Euclidean generating functional.

(f) What is of note above is that the F 2 piece is independent of α which may be inferred from
dimensional considerations.

To summarize, what we obtain from the analysis of the construction of Shore is the
prediction that the m4 piece in the divergent part is proportional to (3 + α2), and that the F 2

piece is independent of α.
In order to make contact with the results of the previous section, it may be readily checked

that, up to the factor C,

(a) for the case of Xij = m2gij we get back the (3 + α2) dependence for the coefficient for
m4 by evaluating [16(C4/2 + C5) + 2C4] from table 1,

(b) we find a simple justification for the α independence of the combination given in
equation (3).

4. Discussion and summary

We have considered in some detail the implications of the results given in the work of GK for
four dimensions. The results check those of BV, including the one result in the latter that was
not checked earlier by the results of PS, namely that of the surface contribution. In addition,
we have considered the remarkable construction of Shore for the case of covariantly constant
fields, for which a complete construction of the Green function for the nonminimal case is
provided and employ this to obtain the heat kernel coefficients for a simplified representation.
The one corresponding to the m4 term is shown to have a (3 + α2) dependence which agrees
with the results of GK and that of BV and PS. In addition, the construction of Shore provides
a simple dimensional argument for why the F 2 term should be independent of α. This agrees
with the observation of Guendelman et al which was found using symbolic computation. The
remaining coefficients C1,2,3,6,7,12 are also evaluated in four dimensions.

While it would be interesting to demonstrate that the construction of Shore is, indeed,
consistent with the Widom method in a formal manner, we have demonstrated instead that the
results from this construction are in agreement with the heat kernel coefficients obtained from
the Widom method.
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